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Data generated during fMRI experiments form 4-dimensional datasets, i.e. series of 
volumes acquired in time. From these sets specific patterns are to be extracted, in time 
and in space, which signify functional topographical information about the brain.  To 
identify the location of brainregions that are involved in a particular aspect of behaviour 
or a function, a pattern has to be brought into the system. This is typically accomplished 
by presenting a subject with a task. In contrast to tasks that are used in neuropsychology, 
fMRI tasks are accurately organized in time. This is necessary because a clearly defined 
pattern of events (i.e. the sequence in time) is required in order to search the fMRI 
datasets for that particular pattern. In this chapter issues are described that are relevant for 
designing an fMRI paradigm. These issues pertain to choice of adequate comparison 
task(s) to isolate the brain function of interest, the optimal scheme of stimulus 
presentation for detection and discrimination of brain activity, and the use of performance 
as an index of a subjects' engagement in the task 
 
 
Tasks and input functions 
 
For an fMRI experiment one has to devise a task which contains at least two different 
conditions in order to create a pattern, or a so-called input function. The sequence of 
these conditions can be organized according to various schemes, with the restriction that 
for an optimal dataset each condition should constitute an equal length of time. Quite 
often a more complicated scheme is required to address the questions of the investigator. 
Simple designs are appealing because they appear to be straightforward and thus easy to 
interpret. Unfortunately this is rarely the case, and this essentially due to the fact that 
there is more than one dependent variable. Suppose that one finds a difference in brain 
activity between two tasks. This can be due to one brain function being invoked by one 
task and not by the other, in which case the regions involved in that function are 
identified. However, with equal plausibility the difference may be associated with other 
functions that are not associated with the function one is interested in, such as those that 
are involved in perceptual, attentional or response generation processes. On another note, 
regions involved in the function of interest may remain undetected because they are, 
unintentionally, invoked by both tasks. Studies involving neurological or psychiatric 
patients are even more complicated, because they may use a strategy that is different from 
the one applied by healthy subjects, for instance because they interpret instructions 
differently, or they cannot devote their attention to the task. When comparing patients to 



controls it is necessary to avoid such confounds, and to show that both groups engage the 
same brain functions. Failing to do so can result in misinterpretation: one may conclude 
that region 'x' fails to activate, and may associate such hypoactivation with a cognitive 
impairment, whereas failure to activate 'x' may well be due to non-compliance resulting 
from an inability to perform any demanding task. 
 
These problems can be overcome by constructing an fMRI paradigm in such a way that 
confounds can be controlled for. Essentially one needs to obtain a clearly defined input 
function, i.e. one that matches the hypothesized neuronal events in the brain, and to 
ensure that subjects can adopt only one particular strategy in performing the task(s). In 
investigating potential pathology in particular brain systems one has to be sure that that 
particular system is invoked by the task, and this can only be accomplished with a tightly 
controlled paradigm. Performance is a valuable measure in fMRI, because it can indicate 
not only whether a function is invoked (very poor performance can reflect disengagement 
from the task), but also the demand imposed by the task on the underlying brain 
system(s). It is not unusual for cognitive tasks to be processed differently depending on 
whether it is easy to perform or difficult, and different brainsystems may be utilized. 
 
In the design of a paradigm the statistical algorithms play a significant role. One can 
predict the statistical power for detection of brain activation by analyzing the input 
function, and this allows for adjustment of the design before applying it in an experiment. 
In many cognitive tasks the design will affect performance, and therefore a novel design 
is best tested in healthy subjects in a ''table and chair'' setting to assess whether the 
paradigm produces the expected results (i.e. invokes the targeted function). Many of the 
currently available fMRI data analysis programs make use of multiple regression 
algorithms (based on the General Linear Model)1. This type of analysis essentially 
determines whether the fMRI signal timeseries in each voxel correlates with the task, but 
it does so in a sophisticated manner. Importantly, it requires the investigator to describe, 
in a coded format, the events that take place when the task is performed, as well as factors 
that contribute to noise in the dataset.  
 
Interpretation of results of fMRI experiments is rarely straightforward. Issues that 
complicate interpretation result in uncertainty about the meaning of the results. Once an 
fMRI protocol, which includes data acquisition method (pulse sequence), task design 
(paradigm) and image analysis (preprocessing and statistical algorithms) has been 
composed, it can be tested in an fMRI experiment. For testing one can assess the qualities 
of the protocol much like cognitive psychological test instruments are tested, i.e. on the 
basis of validity, sensitivity and reliability. Validity (am I measuring what I think I am 
measuring?) can be assessed by comparing results to other techniques, or by testing 
whether experimental manipulations have the expected effect. Sensitivity (can I measure 
what I want to measure?) can be assessed by testing whether brain activity can be 
detected in a priori defined regions with a simple version of the task. Reliability (are my 
results reproducible?) can be assessed by repeating the experiment in the same or another 
group of subjects. There are many factors that affect the quality measures, ranging from 
pulse sequence and tuning of the scanner to choice of the paradigm and data processing 
procedures to subject sample selection. Based on an assessment of these qualities one 



may decide to alter one or more of the elements of the protocol. Choice of the paradigm 
is perhaps one of the most difficult issues, given that very little is known about how brain 
functions are organized, and deserves careful consideration.  
  
 
Stimulus properties 
 
The choice of a paradigm depends on the objective of a study. In general, formulation of 
a specific hypothesis benefits the interpretation of the results, particularly if the design is 
optimized to address that hypothesis. For novel concepts, it may be most effective to start 
out with a straightforward on-off design in order to maximize power of detection of brain 
activity, i.e. to first assess sensitivity of the constructed protocol. Having obtained a 
description of involved brain regions, subsequent studies will typically require more 
sophisticated designs in order to exclude confounds (e.g. functions one is not interested 
in) and to assess the neuroscientific or behavioural significance of activity patterns . 
 
What stimuli are presented depends firstly on what functions one wants to measure, and 
secondly on how closely comparison stimuli can be matched. To separate a particular 
function, the comparison stimuli should invoke all the functions that are invoked by the 
experimental stimuli, except for the function of interest. This is not easy to achieve 
because the cognitive processes involved in processing stimuli are generally complex, 
and can differ considerably when comparison stimuli are processed by a subject 2. For 
instance, suppose one wants to investigate which regions are involved in working 
memory. One often used task for this purpose is the ''2-back task'', where stimuli have to 
be maintained in short-term memory while additional stimuli are processed. The control 
task typically involves making simple decisions for each stimulus as it is presented, 
which controls for visual input and motor output processes. However, the working 
memory element involves not only maintaining information in memory, but also 
coordination of processing the additional stimuli, i.e. switching between making 
decisions for each stimulus and holding information on line. To isolate the latter 
component, a more complicated design is required, for instance one where the interval 
between stimuli is varied within the task. Activity that correlates with the inter stimulus 
interval might then be regarded as specific for maintenance of information.  
 
There are various cognitive functions that require more than one type of control stimulus 
due to complicated interactions between brain systems 3. One way of dealing with this is 
to devise multiple tasks, each of which contains the function of interest plus several 
functions that need to be filtered out. This is referred to as ''conjunction design'' 4 and is 
used for instance in language studies. In order to isolate ''language comprehension'', 
comparing a visual language task with a visual control task may not yield an activity 
pattern that is selective for comprehension. The patterns obtained after subtraction 
analysis are likely to include orthographical processes as well. One solution is to add a 
second set of tasks where experimental and comparison stimuli are presented aurally 
instead of visually. By selecting brain activity that emerges from both subtractions, 
modality-selective elements are in principle eliminated. 
 



 
Organization of stimuli in time  
 
The organization of stimuli in time has received considerable attention in recent years. A 
popular approach is referred to as the ''event-related'' or ''single-event'' design 5;6. The 
name suggests a distinct approach in fMRI, but there is some confusion regarding the 
underlying concepts. The terms simply indicate that events are regarded as separate 
instances, and as such virtually all cognitive experiments are event-related. The term is 
however generally used to indicate the type of data analysis that is applied, in that the 
BOLD response is an important factor in building the factors for regression analysis. For 
instance, a task may involve presentation of series of experimental stimuli with an 
interval of 2 or 3 seconds, alternated with series of comparison stimuli. The data can be 
analyzed with a boxcar (''on-off'') function, but alternatively each stimulus can be 
modeled as a brief event (i.e. as an impulse function), that can transformed to a series of 
BOLD response curves. The second is often called an event-related fMRI experiment, in 
spite of the fact that the event itself cannot be characterized in any detail. Extraction of 
the BOLD response from the data requires a special scheme of varying stimulus onset 
times and/or inter stimulus intervals, and can sometimes be achieved without any 
comparison stimuli.  
 
In choosing a particular scheme, several issues are important. Firstly, the characteristics 
of the brain processes that are invoked by a stimulus determine whether a block design or 
an event-related design should be used. For instance, perception of simple visual stimuli 
(eg moving dots) involves predictable rapid and brief instances of neuronal activity, and 
can be modeled adequately. Moral judgment however can not be modeled very well (in 
time), making it difficult to construct an adequate impulse function. In this case a block 
design is better suited. 
 
For each task, an optimal scheme can be estimated based both on the temporal 
characteristics of the invoked processes, and on the mathematical characteristics of the 
scheme in terms of factor variance and degrees of freedom in the statistical analysis. An 
important constraint in the design is the effect of the sequence of stimuli on the mental 
process one is interested in. For instance, making the inter stimulus interval variable 
enhances the ability to extract BOLD curves, but it also can make the task more difficult, 
thereby increasing numbers of errors, and it potentially affects the strategy that is adopted 
by the subject, thereby altering the brain systems that are used. This is of particular 
concern when studying neurological or psychiatric patients, who tend to disengage from 
the task when it becomes difficult. 
 
Considering performance 
 
Performance is not a trivial issue, particularly when comparing patients to controls. In 
neuropsychology, performance is generally the readout variable, and is used to 
characterize a persons cognitive abilities. In fMRI performance can give rise to problems 
in interpretation. Consider a group of patients who perform poorly on tasks that require 
working memory. Comparing them to controls during scanning while performing such a 



task typically reveals reduced activity in prefrontal brain regions. It is then tempting to 
conclude that these brain regions are impaired, causing poor performance, but that is not 
quite what the data support 7. Poor performance may be associated with different 
strategies: some subjects will keep on trying to perform the task as intended, but others 
may switch to a strategy of processing only some of the stimuli (and ignoring the other 
stimuli) in order to achieve at least some success. Other may even revert to guessing. 
Obviously, the strategy determines how much the working memory system is taxed, and 
this affects the levels of brain activity as measured with fMRI. This changes the 
interpretation of hypoactivation considerably: it may simply reflect reduced engagement 
in the task. The reason for the poor performance may be quite different from frontal 
dysfunction. It may be associated with a general slowing of information processing or 
response generation, leading to conflicts between processing of one stimulus and of the 
next, simply because there is not enough time for that particular subject.  
 
The fact that one does not know for certain whether patients (partially) disengage when 
the task is difficult, argues in favour of adjusting the task such that performance is 
approximately equal for both patients and controls 8. The level of difficulty may also 
adjusted for each individual subject, based on a practice session before scanning. An 
alternative solution is to adjust the statistical analysis to performance by separating scans 
acquired during correct responses from scans acquired during incorrect responses. This 
can be achieved by modeling the two types of responses in separate input functions. 
There is, however, still the possibility that subjects are guessing. Group-wise difference 
in statistical power is another problem inherent in this approach, but this may be solved to 
some extent by discarding scans in such a way that equal numbers of scans remain for 
both types of responses. 
 
To summarize, careful design of fMRI paradigms benefits interpretation of  brain 
imaging results. Many of the important design issues can be dealt with before any fMRI 
scans are acquired, based on prior knowledge about the neuronal mechanisms underlying 
the function of interest, and on mathematical properties of the input function(s).  
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